$0.30 \times 0.10 \text{ mm}$ 

3090 measured reflections

 $R_{\rm int} = 0.015$ 

1745 independent reflections 1590 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 2-[(Indan-1-vlidene)amino]ethanol

## Abdulrahman O. Al-Youbi,<sup>a</sup> Abdullah M. Asiri,<sup>a,b</sup> Hassan M. Faidallah,<sup>a</sup> Khalid A. Alamry<sup>a</sup> and Seik Weng Ng<sup>c,a</sup>\*

<sup>a</sup>Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, <sup>b</sup>Center of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and CDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 11 August 2011; accepted 13 August 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.099; data-to-parameter ratio = 14.3.

The five-membed ring of the title compound,  $C_{11}H_{13}NO$ , that is fused with the aromatic ring is approximately planar (r.m.s. deviation = 0.037 Å) despite the presence of the  $sp^3$ -hybridized ethylene linkage. The hydroxy group of the N-bound hydroxyethyl chain serves as hydrogen-bond donor to the azomethine N atom of an adjacent molecule, generating a hydrogen-bonded  $C_2$ -symmetric dimer.

## **Related literature**

The related C<sub>13</sub>H<sub>13</sub>NO amine is a reagent in the synthesis of pharmaceuticals, see: Stange et al. (1957).



## **Experimental**

#### Crystal data

2

| C <sub>11</sub> H <sub>13</sub> NO | V = 1773.83 (7) Å <sup>3</sup> |
|------------------------------------|--------------------------------|
| $M_r = 175.22$                     | Z = 8                          |
| Monoclinic, $C2/c$                 | Cu Ka radiation                |
| a = 16.0207 (4)  Å                 | $\mu = 0.67 \text{ mm}^{-1}$   |
| b = 9.2002 (2) Å                   | $T = 100 { m K}$               |
| c = 13.0600 (3) Å                  | $0.30 \times 0.30 \times 0.10$ |
| $\beta = 112.855 \ (3)^{\circ}$    |                                |

#### Data collection

| gilent SuperNova Dual             |
|-----------------------------------|
| diffractometer with an Atlas      |
| detector                          |
| Absorption correction: multi-scan |
| (C - A!' - DD - A '' + (2010))    |

(CrvsAlis PRO: Agilent, 2010)  $T_{\min} = 0.825, T_{\max} = 0.937$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.037$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.099$               | independent and constrained                                |
| S = 1.02                        | refinement                                                 |
| 1745 reflections                | $\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$  |
| 122 parameters                  | $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$     | D-H                           | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|----------------------|-------------------------------|-------------------------|--------------|------------------|
| $O1-H1\cdots N1^i$   | 0.91 (2)                      | 1.91 (2)                | 2.820 (1)    | 173 (2)          |
| Symmetry code: (i) - | $-x + 1, v, -z + \frac{1}{2}$ | <u>I</u> .              |              |                  |

:: (i) -+ 1, y,

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank King Abdulaziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5608).

### References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Stange, K., Friederich, H. & Amann, A. (1957). Ger. Patent 955497, 19570103. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

## Acta Cryst. (2011). E67, o2425 [doi:10.1107/S1600536811032843]

## 2-[(Indan-1-ylidene)amino]ethanol

## A. O. Al-Youbi, A. M. Asiri, H. M. Faidallah, K. A. Alamry and S. W. Ng

#### Comment

A enormously large number of Schiff base derivatives of aldehydes and ketones have been synthesized; however, 1-indanone represents an anomaly as only few have been reported. In the 2-aminoethanol derivative (Scheme I), the five-membed cyclohexene ring is planar despite the presence of  $sp^3$ -hybridized ethylene linkage molecule (Fig. 1). The hydroxy group of the *N*-bound hydroxyethyl chain serves as hydrogen-bond donor to the azomethine N atom of an adjacent molecule to generate a hydrogen-bonded dinuclear molecule (Table 1). However, there is no significant  $\pi$  interaction of the rings as the distances between them exceed 3.5 Å (Fig. 2). The compound has not been reported in the chemical literature; on the other hand, the corresponding reduced amine is a reagent for the synthesis of pharmaceuticals (Stange *et al.*, 1957).

#### Experimental

A mixture of 2-amino ethanol (0.6 g, 10 mmol) and 1-indanone (1.3 g, 10 mmol) in dry benzene (50 ml) was refluxed in a Dean-Stark apparatus until no more water was collected (in about 2 h). The solvent was then removed under reduced pressure and the residue treated with methanol. The solid which separated out was recystalized from ethanol to give colorless, 418–419 K.

#### Refinement

Carbon bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å,  $U_{iso}(H)$  1.2 $U_{eq}(C)$ ] and were included in the refinement in the riding model approximation.

The hydroxy H-atom was located in a difference Fouier map and was freely refined.

**Figures** 



Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of  $C_{13}H_{11}NO$  at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.



Fig. 2. Hydrogen-bonded dimer. The atoms of the aromatic rings are shown with their van der Waals surfaces.

F(000) = 752

 $\theta = 3.7-74.2^{\circ}$  $\mu = 0.67 \text{ mm}^{-1}$ 

Prism, colorless  $0.30 \times 0.30 \times 0.10$  mm

T = 100 K

 $D_{\rm x} = 1.312 \ {\rm Mg \ m^{-3}}$ 

Cu K $\alpha$  radiation,  $\lambda = 1.54184$  Å

Cell parameters from 1977 reflections

## 2-[(Indan-1-ylidene)amino]ethanol

Crystal data

C<sub>11</sub>H<sub>13</sub>NO  $M_r = 175.22$ Monoclinic, C2/c Hall symbol: -C 2yc a = 16.0207 (4) Å b = 9.2002 (2) Å c = 13.0600 (3) Å  $\beta = 112.855$  (3)° V = 1773.83 (7) Å<sup>3</sup> Z = 8

## Data collection

| Agilent SuperNova Dual diffractometer with an Atlas detector                | 1745 independent reflections                                              |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: SuperNova (Cu) X-ray Source                               | 1590 reflections with $I > 2\sigma(I)$                                    |
| Mirror                                                                      | $R_{\rm int} = 0.015$                                                     |
| Detector resolution: 10.4041 pixels mm <sup>-1</sup>                        | $\theta_{\text{max}} = 74.4^{\circ}, \ \theta_{\text{min}} = 5.7^{\circ}$ |
| ω scans                                                                     | $h = -19 \rightarrow 19$                                                  |
| Absorption correction: multi-scan<br>( <i>CrysAlis PRO</i> ; Agilent, 2010) | $k = -11 \rightarrow 6$                                                   |
| $T_{\min} = 0.825, \ T_{\max} = 0.937$                                      | $l = -15 \rightarrow 16$                                                  |
| 3090 measured reflections                                                   |                                                                           |

### Refinement

| <b>D G D D D</b>                | Primary atom site location: structure-invariant direct                              |
|---------------------------------|-------------------------------------------------------------------------------------|
| Refinement on $F^2$             | methods                                                                             |
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.037$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.099$               | H atoms treated by a mixture of independent and constrained refinement              |
| <i>S</i> = 1.02                 | $w = 1/[\sigma^2(F_o^2) + (0.0573P)^2 + 1.1159P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 1745 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |

# supplementary materials

| 122 parameters | $\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$  |
|----------------|--------------------------------------------------------|
| 0 restraints   | $\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$ |

|      | x           | У            | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|-------------|--------------|--------------|---------------------------|
| 01   | 0.61199 (6) | 0.25279 (9)  | 0.23182 (7)  | 0.0186 (2)                |
| H1   | 0.5586 (14) | 0.303 (2)    | 0.2000 (16)  | 0.051 (6)*                |
| N1   | 0.54795 (6) | 0.41152 (11) | 0.38232 (7)  | 0.0155 (2)                |
| C1   | 0.50616 (8) | 0.78897 (13) | 0.39934 (9)  | 0.0162 (3)                |
| C2   | 0.44473 (8) | 0.90379 (13) | 0.36833 (10) | 0.0186 (3)                |
| H2   | 0.4646      | 1.0007       | 0.3891       | 0.022*                    |
| C3   | 0.35384 (8) | 0.87441 (13) | 0.30649 (10) | 0.0194 (3)                |
| Н3   | 0.3114      | 0.9521       | 0.2851       | 0.023*                    |
| C4   | 0.32389 (8) | 0.73221 (13) | 0.27531 (9)  | 0.0180 (3)                |
| H4   | 0.2615      | 0.7139       | 0.2334       | 0.022*                    |
| C5   | 0.38514 (8) | 0.61760 (13) | 0.30546 (9)  | 0.0160 (3)                |
| Н5   | 0.3653      | 0.5209       | 0.2840       | 0.019*                    |
| C6   | 0.47636 (7) | 0.64727 (12) | 0.36786 (9)  | 0.0148 (3)                |
| C7   | 0.55414 (7) | 0.54679 (13) | 0.40624 (9)  | 0.0147 (3)                |
| C8   | 0.63802 (7) | 0.63476 (13) | 0.47441 (9)  | 0.0174 (3)                |
| H8A  | 0.6859      | 0.6219       | 0.4450       | 0.021*                    |
| H8B  | 0.6620      | 0.6034       | 0.5531       | 0.021*                    |
| C9   | 0.60731 (8) | 0.79464 (13) | 0.46423 (10) | 0.0192 (3)                |
| H9A  | 0.6218      | 0.8381       | 0.5385       | 0.023*                    |
| H9B  | 0.6372      | 0.8525       | 0.4242       | 0.023*                    |
| C10  | 0.63052 (8) | 0.32330 (13) | 0.42013 (9)  | 0.0181 (3)                |
| H10A | 0.6415      | 0.2820       | 0.4942       | 0.022*                    |
| H10B | 0.6830      | 0.3850       | 0.4268       | 0.022*                    |
| C11  | 0.62087 (8) | 0.20122 (12) | 0.33805 (9)  | 0.0173 (3)                |
| H11A | 0.6747      | 0.1373       | 0.3680       | 0.021*                    |
| H11B | 0.5670      | 0.1423       | 0.3299       | 0.021*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| O1  | 0.0162 (4) | 0.0219 (4) | 0.0178 (4) | 0.0038 (3)  | 0.0067 (3) | 0.0012 (3)  |
| N1  | 0.0144 (5) | 0.0173 (5) | 0.0142 (5) | 0.0019 (4)  | 0.0047 (4) | 0.0002 (4)  |
| C1  | 0.0172 (6) | 0.0184 (6) | 0.0147 (5) | -0.0006 (4) | 0.0080 (4) | -0.0002 (4) |
| C2  | 0.0223 (6) | 0.0158 (5) | 0.0194 (6) | 0.0006 (5)  | 0.0102 (5) | 0.0001 (4)  |
| C3  | 0.0198 (6) | 0.0199 (6) | 0.0197 (6) | 0.0062 (5)  | 0.0090 (5) | 0.0043 (5)  |
| C4  | 0.0144 (5) | 0.0230 (6) | 0.0163 (5) | 0.0023 (5)  | 0.0055 (4) | 0.0018 (4)  |
| C5  | 0.0158 (6) | 0.0182 (6) | 0.0147 (5) | -0.0002 (4) | 0.0066 (4) | -0.0003 (4) |
| C6  | 0.0153 (6) | 0.0168 (6) | 0.0131 (5) | 0.0013 (4)  | 0.0064 (4) | 0.0005 (4)  |
| C7  | 0.0128 (5) | 0.0191 (6) | 0.0120 (5) | -0.0007 (4) | 0.0044 (4) | 0.0000 (4)  |
| C8  | 0.0139 (5) | 0.0187 (6) | 0.0171 (5) | -0.0007 (4) | 0.0033 (4) | -0.0014 (4) |
| C9  | 0.0165 (6) | 0.0174 (6) | 0.0222 (6) | -0.0017 (4) | 0.0058 (5) | -0.0031 (5) |
| C10 | 0.0144 (5) | 0.0197 (6) | 0.0166 (6) | 0.0041 (4)  | 0.0020 (4) | 0.0005 (4)  |

# supplementary materials

| C11             | 0.0159 (5)    | 0.0161 (5)   | 0.0191 (6) | 0.0028 (4)    | ) 0.0058 (4) | 0.0018 (4)   |
|-----------------|---------------|--------------|------------|---------------|--------------|--------------|
| Geometric paran | neters (Å, °) |              |            |               |              |              |
| 01—C11          |               | 1.4201 (14)  | (          | С5—Н5         |              | 0.9500       |
| O1—H1           |               | 0.91 (2)     | (          | С6—С7         |              | 1.4742 (15)  |
| N1—C7           |               | 1.2776 (15)  | (          | С7—С8         |              | 1.5245 (15)  |
| N1-C10          |               | 1.4646 (14)  | (          | С8—С9         |              | 1.5403 (16)  |
| C1—C2           |               | 1.3924 (16)  | (          | C8—H8A        |              | 0.9900       |
| C1—C6           |               | 1.3943 (16)  | (          | C8—H8B        |              | 0.9900       |
| C1—C9           |               | 1.5101 (16)  | (          | С9—Н9А        |              | 0.9900       |
| C2—C3           |               | 1.3900 (16)  | (          | С9—Н9В        |              | 0.9900       |
| С2—Н2           |               | 0.9500       | (          | C10—C11       |              | 1.5185 (16)  |
| C3—C4           |               | 1.3985 (17)  | (          | C10—H10A      |              | 0.9900       |
| С3—Н3           |               | 0.9500       | (          | C10—H10B      |              | 0.9900       |
| C4—C5           |               | 1.3890 (16)  | (          | C11—H11A      |              | 0.9900       |
| C4—H4           |               | 0.9500       | (          | С11—Н11В      |              | 0.9900       |
| C5—C6           |               | 1.3962 (15)  |            |               |              |              |
| C11—O1—H1       |               | 109.4 (12)   | (          | С7—С8—Н8А     |              | 110.5        |
| C7—N1—C10       |               | 118.90 (10)  | (          | С9—С8—Н8А     |              | 110.5        |
| C2—C1—C6        |               | 120.08 (11)  | (          | С7—С8—Н8В     |              | 110.5        |
| C2—C1—C9        |               | 128.34 (11)  | (          | С9—С8—Н8В     |              | 110.5        |
| C6—C1—C9        |               | 111.57 (10)  | ]          | H8A—C8—H8B    |              | 108.7        |
| C3—C2—C1        |               | 118.95 (11)  | (          | С1—С9—С8      |              | 104.63 (9)   |
| С3—С2—Н2        |               | 120.5        | (          | С1—С9—Н9А     |              | 110.8        |
| C1—C2—H2        |               | 120.5        | (          | С8—С9—Н9А     |              | 110.8        |
| C2—C3—C4        |               | 120.97 (11)  | (          | С1—С9—Н9В     |              | 110.8        |
| С2—С3—Н3        |               | 119.5        | (          | С8—С9—Н9В     |              | 110.8        |
| С4—С3—Н3        |               | 119.5        | ]          | H9A—C9—H9B    |              | 108.9        |
| C5—C4—C3        |               | 120.20 (11)  | ]          | N1—C10—C11    |              | 109.93 (9)   |
| C5—C4—H4        |               | 119.9        | ]          | N1—C10—H10A   |              | 109.7        |
| C3—C4—H4        |               | 119.9        | (          | С11—С10—Н10А  |              | 109.7        |
| C4—C5—C6        |               | 118.76 (11)  | ]          | N1—C10—H10B   |              | 109.7        |
| C4—C5—H5        |               | 120.6        | (          | С11—С10—Н10В  |              | 109.7        |
| C6—C5—H5        |               | 120.6        | ]          | H10A—C10—H10  | В            | 108.2        |
| C1—C6—C5        |               | 121.05 (11)  | (          | 01—C11—C10    |              | 112.74 (9)   |
| C1—C6—C7        |               | 109.80 (10)  | (          | 01—C11—H11A   |              | 109.0        |
| C5—C6—C7        |               | 129.11 (11)  | (          | C10—C11—H11A  |              | 109.0        |
| N1—C7—C6        |               | 123.55 (10)  | (          | 01—C11—H11B   |              | 109.0        |
| N1—C7—C8        |               | 128.83 (10)  | (          | C10—C11—H11B  |              | 109.0        |
| C6—C7—C8        |               | 107.61 (10)  | ]          | H11A—C11—H111 | В            | 107.8        |
| С7—С8—С9        |               | 106.09 (9)   |            |               |              |              |
| C6—C1—C2—C      | 3             | 0.39 (17)    | (          | C10—N1—C7—C   | 8            | -2.07 (17)   |
| C9—C1—C2—C      | 3             | 178.90 (11)  | (          | C1—C6—C7—N1   |              | -174.79 (10) |
| C1—C2—C3—C      | 4             | -0.12 (17)   | (          | C5—C6—C7—N1   |              | 2.73 (18)    |
| C2—C3—C4—C      | 5             | -0.35 (18)   | (          | C1—C6—C7—C8   |              | 4.31 (12)    |
| C3—C4—C5—C      | 6             | 0.53 (16)    | (          | С5—С6—С7—С8   |              | -178.17 (11) |
| C2—C1—C6—C      | 5             | -0.20 (17)   | ]          | N1—C7—C8—C9   |              | 173.44 (11)  |
| C9—C1—C6—C      | 5             | -178.95 (10) | (          | С6—С7—С8—С9   |              | -5.60 (12)   |

| C2-C1-C6-C7                                   | 177.55 (10)  |          | C2—C1—C9—C8   |              | 179.04 (11)  |
|-----------------------------------------------|--------------|----------|---------------|--------------|--------------|
| C9—C1—C6—C7                                   | -1.19 (13)   |          | C6—C1—C9—C8   |              | -2.35 (13)   |
| C4—C5—C6—C1                                   | -0.26 (16)   |          | C7—C8—C9—C1   |              | 4.78 (12)    |
| C4—C5—C6—C7                                   | -177.54 (10) |          | C7—N1—C10—C11 |              | -148.98 (10) |
| C10—N1—C7—C6                                  | 176.83 (10)  |          | N1-C10-C11-O1 |              | 63.93 (12)   |
|                                               |              |          |               |              |              |
| Hydrogen-bond geometry (Å, °)                 |              |          |               |              |              |
| D—H···A                                       | i            | D—H      | H···A         | $D \cdots A$ | D—H···A      |
| O1—H1···N1 <sup>i</sup>                       | (            | 0.91 (2) | 1.91 (2)      | 2.820(1)     | 173 (2)      |
| Symmetry codes: (i) $-x+1$ , $y$ , $-z+1/2$ . |              |          |               |              |              |





